■ Precision Cooling for Business-Critical Continuity

Liebert Hiross HPS 06-14 kW High Performance Split Air Conditioner -----

Liebert HIROSS HPS

Efficiency, Compactness, Flexibility!

HPS is the newest high performance split air conditioner designed to assure proper environmental conditions inside technological environments, especially BTS and Node B for Mobile Networks.

It's efficient thanks to the effective air distribution reached through the displacement cooling concept; it's energy and space saving thanks to the high efficiency components and the compactness of the innovative freecooling version; it's extremely flexible thanks to the possibility of selecting among several versions: HPS can be configured depending on the main application drivers (noise level, environmental conditions range etc.) and the desired options (freecooling, emergency freecooling, heating etc.).

Distribute the air in the best way

HPS delivers the cold air straight down, close to the racks suction area and intakes the hot air out coming from the heat sources, into the cabinet sides (frontal and lateral). In this way the mixing effect between conditioner cold air and electronic equipment hot air is denied resulting in a double beneficial effect: the rack is fed by cold air where it is needed and the air conditioner treats only the hot air maximizing its efficiency. Proper temperature inside the racks, high efficiency of the cooling equipment, hot spot absence in the site: distributing the air in a smart way is very effective.

Save energy and space

The use of the optional freecooling gives the possibility to stop the compressor and use the external fresh air to cool the site: the annual energy absorption, requested to cool the site, goes sensibly down. The 0-100% fine modulation allows to keep constantly the desired set point inside the site. No adding module is requested: the innovative rotary freecooling system keeps unchanged the requested space to install the unit.

Maximize site reliability

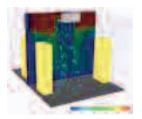
Remote nodes need to exchange data continuously, always working at proper environmental conditions. Therefore the air conditioner reliability is not an option: it's a must. The most modern design and components such as scroll compressor and plugtype fans, heat exchanger surfaces and airflows generously designed allow the unit to work 24h/day, 365 days. Maximize the unit reliability selecting the emergency cooling option: in case of main supply fault the air conditioner is supplied by alternative energy sources like 48 VDC batteries or independent AC generator.

Choose the cooling unit suitable to your application

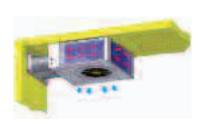
HPS assures optimal air distribution, efficiency, energy saving, reliability, compactness whatever its configuration. More stringent requirements in terms of noise level emission and maximum external working temperature, can be satisfied selecting HPS advanced version: $45 \, \text{dB(A)}$ at $3 \, \text{m}$ f.f and $50 \, ^{\circ}$ C with internal air intake conditions of $30 \, ^{\circ}$ C, $35 \, ^{\circ}$ R.H.

Technical Data

Model HPSE + HPSC


Evaporating side installation			(eil	ing mounting	7		
Main power supply		230/1N/50	400/3N/50			400/3N/50	
Emergency power supply (opt)		230/111/30		C or 230/1N		100/3/1/30	
Performances							
Total cooling capacity(1)	kW	6,4	8,1	10,1	12,5	14,6	
Sensible cooling capacity ⁽¹⁾	kW	6,4	8,1	10,1	12,5	14,6	
Compressor power input ⁽¹⁾	kW	1,7	2,2	3,0	3,7	4,6	
Condenser fan power input (1)	kW	0,24	0,24	0,12	0,15	0,15	
Evaporator fan power input (1)	kW	0,18	0,35	0,35	0,33	0,33	
Evaporator airflow	m³/h	1.510	2.360	2.360	2.770	2.750	
Condenser max.airflow	m³/h	2.970	2.970	6.300	5.675	5.675	
Outdoor sound pressure level ⁽²⁾	dB(A)	48,5	48,5	52	54	56	
Indoor sound pressure level(2)	dB(A)	58	62,5	62,5	63	63	
Max.ambient temperature(3)	°C	52	50	50	50	50	
Defuiremention simulate							
Refrigeration circuit Compressor type/quantity				scroll / 1			
Refrigerant	scroll / 1 R407C						
Expansion device		thermostatic valve					
EXPUISION GENICE			uiei	mostatic valv			
Evaporator fan							
Quantity/type/poles version				1/Axial/4			
Driven/motor protection		direct / IP	44		direct / IP54		
Condensation							
Condenser fan		1 / avial / (<u> </u>		2 / avial / 6		
Quantity/type/poles		1 / axial / 6 2 / axial / 6					
Driven/motor protection Control system		direct / IP54 variable speed					
Control system			Vd	nable speed			
Air filtery							
Filter type / efficiency		pleated / G3					
Heating	1347		1 -			_	
Electric heating (opt)	kW		1,5		4	,5	
Cabinet							
Frame			gal	vanized steel			
Painting		polyester – RAL 7035					
Insulation type/thikness	- / mm	polyurethane class A1 /10					
Evaporator Width	mm	800 900			00		
Evaporator Depth	mm	800		900			
Evaporator Height	mm	310		375			
Evaporator Weight	kg	50	53	53	58	58	
Condenser Width	mm		20		920		
Condenser Depth	mm		390		390		
	mm	840		1190			
Condenser Weight		80	82	97	103	111	
Condenser Height		84	40	97	1190	111	

06


08

10

12

HPS effect: air intake from the hottest part of the room (top), cold air delivery directly to the electronic equipment

HPS in direct expansion mode: hot air intake from three sides to maximise the energy efficiency

HPS in free cooling mode: use of external fresh air to maximise the energy saving

- litions: % R.H indoor air 5°C outdoor.
- d with outdoor ture 35°C, 2 meters unit, free field ns (factory set).
- to 30°C r intake.

d to HPS standard options)

AC Powe		Connectivity Monitoring	DC Power Out Side Plant	Embedded Computing Power Switching e Controls
The global le		usiness-critical continuity.		nnetworkpower.com emea@emersonnetworkpower.com
adaptive and ul in the industry,	tra-reliable solutions that Emerson Network Powe	t enable and protect its customers' busine	ss-critical technology infrastructures. Ba ecision cooling, connectivity and embe	!. The company is the trusted source for custom, acked by the largest global services organization idded products and services for computer, comiebert, Knuerr, ASCO, Astec, Lorain.